
PROGRAMMING 
TRAINING 

Hansei Technology 

By : Badea Robert 



 

 

 
 
 
 



 

 

 
 
 
CONTENTS: 
 

1. Introduction 
2. Variabile 
3. The basics 
4. Writing in files 
5. The ”if” decision structure 
6. Repetitive instructions 
7. Functions 
8. External libraries 
9. Object oriented programming 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 
 
 
 
 

CHAPTER 1: 
Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

In our team, the robot's code is written in Java, but unfortunately, we are not very 
proficient in this programming language. Therefore, we will start with C++ since it is 
simpler for us, as well as for you, as this is what is taught in high school. 
 

C++:  
In the first part of this training, you will learn the basics of programming. Although we 
will cover them in C++, these fundamentals work the same way in any programming 
language. After mastering the basics and understanding the core concepts, we will 
move on to Java, where you will directly program robots, and we won't spend too much 
time on theory. 
 
 Why aren’t we programing the robot in C++? 
C++ is an old programming language (created in 1985) and is still used today for creating 
operating systems (an operating system cannot be created in Java; they can only 
function in C, C++, and Pascal). Unfortunately, just as C++ is good for certain things, so is 
Java. Even though all programming languages might seem similar, they function 
differently, and different projects require different languages. 
 
 How will the training work? 
This course is divided into 2 sections: C++ and Java. Each of them will have multiple 
lessons, and especially for the C++ section, you will also receive assignments. Assuming 
you are here because you want to be and not because you're forced to, you'll need to 
complete the assignments as you see fit. However, you must ensure that you 
understand each lesson (I will ask you questions from assignments and previous lessons 
to make sure you've understood; if you're confident about a lesson, you don't have to 
implement all exercises, but you should at least read them). 
 
My colleague Radu and I will conduct the lessons, which will be recorded as videos. If 
you need further explanations for any of the lessons, you can watch the recordings. 
 
You will need to install an IDE (a program where you compile your written code). You 
can use any IDE you want, but my recommendations are: Visual Studio Community, 
Visual Studio, or CodeBlocks. Additionally, you will need to create an account on pbInfo, 
which is a website where you can find problems and theory for C++. If you need more 
materials, I suggest: 
 

• https://www.pbinfo.ro/articole/5547/informatica-clasa-a-ix-a 
• https://www.algopedia.ro/wiki/index.php/Cercul_de_informatic%C4%83,_IQ_Acad

emy,_clasa_a_V-a,_anul_2019-2020 
• Chat GPT is your best friend :) 

 
 

 
 



 

 

 
 
 
 
 
 
 

CHAPTER 2: 
Variabile 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

A variable stores different types of data and enables the execution of operations using 
this data. 
 

 
  
"x", "a", and "b" are variables, each of them holding a numerical value. Thus, through the 
operation "x = a + b," the variable "x" will receive the value that is the sum of "a" and "b." 
 
Example: 
We have variables a, b, and c, and we execute the following code sequence: 
 
a = 5; 
b = 3; 
c = a * b; -> c = 15;  
c = c * 3; ->  c = 45; 
a = c - a; a = 40, -> c = 45; 
 
If an expression ("c * 3") is assigned to a variable, first the expression will be evaluated (c 
= 15 -> "c * 15" = 45), and then that value will be assigned to the variable. In the end, the 
variable "c" will have the value 45. 
 
If we use a variable in an expression ("c - a"), its value does not change. The value of a 
variable changes only through an assignment ("a = ..."). 
 
Variable Types: 
Each type of variable can hold a different kind of number. In robotics, we will mainly use 
3 types of data: "int" (can hold integers between -10^9 and +10^9), "double" (can hold real 
numbers), and "boolean" (can hold 1 and 0, representing true or false). Even though we 
won't use them frequently, it's important for you to know about the other variable types 
as well:  
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Examples: 
• We will use "double" for speed. 
• We will use "boolean" for a variable like "RobotIsMoving." 
• We will use "int" for the number of autonomous code cycles. 

 
String:  
"String" is a data type that can hold a sequence of characters. For instance, a variable of 
type string can have the value "Robert." 
 
We cannot assign a string variable's value to an int variable. In other words, if we have a 
variable "a" (of type int) and a variable "s" (of type string), we cannot write "a = s" (because 
"a" can only hold integer numbers, while "s" represents a sequence of characters) or "s 
= a." 
 
Exercitii:  

• What values will the variables a, b, c, and s have at the end of each code? 

  
 
 
If in any of the examples you are not clear about what is happening, follow the code line 
by line and write down the values of each variable on a sheet of paper. This method of 
error detection is called "debugging" and is the most common way to identify errors in 
code. 

 
 
• Specify the value of NR at the end and write 2 more lines 
of code so that the variable x will have the value 999, and the 
variable NR will have the value "ALEX." You are not allowed to 
use "x = 999" or "NR = "ALEX"." 

 
You probably find this code to be nonsensical. I completely 
agree with you. However, you will end up working with the 
robot's code, and I promise you that it truly doesn't make any 
sense. This is why you need to learn to follow code written by 
others and write code that is easy to understand. 
 
 
 



 

 

 
Example of code from the robot  –> 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 
 
 
 
 
 

CHAPTER 3:  
The basics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
If you open a new project in any of the before mentioned applications, you will see some 
lines of code already written:  

 
Depending on the application used, 
you will encounter one of these two 
variants, but they function the same 
way. Both will display the message 
"Hello world" on the screen. Let's 
see what each of these lines means: 
 
 

 
 
#include <iostream> tells the 
computer that it can use the 
"iostream" library. Libraries function 
like dictionaries, allowing the 
computer to understand the other 
lines of code because they are defined 
in "iostream." Without this library, the 
computer wouldn't be able to 
compile the "cout" operation. 
 
 
 
using namspace std; It tells the computer to automatically add "std::" before lines of 
code. This line of code is not mandatory, but it will make your life much easier. You can 
see that one of the examples has the line "using namespace std;", while the other uses 
"std::" before lines of code. If we were to continue the code from the first example, we 
would need to write "std::" before each line of code. 
 
Int main() { } defines the actual program. When we compile the program, it will only run 
the code inside the curly braces of int main(). 
 
cout << ; This is the write operation: if we write the name of a variable after "<<" its value 
will be displayed on the screen, and if we write "..." after "<<" then the program will 
display the text within the quotation marks. In our case, it will display "Hello world" 
because that's what is written between the quotation marks. 
 
 



 

 

cin >> ; is used to read the value of a variable from the keyboard. 
 
 For example, if we want to read a number from the keyboard and then display its 
double, the code will look like this: 
 

 
This program will wait 
until we input a number 
in the console. Then it will 
display the text "Dublul 
numarului cerut este " 
followed by the value of 
the expression "numar * 

2." 
 
 

 
In the console it looks like this: 
 

 
 
Exercises: 

1. https://www.pbinfo.ro/probleme/939/sum00 
2. https://www.pbinfo.ro/probleme/1258/scadere2 
3. https://www.pbinfo.ro/probleme/1260/asii 
4. https://www.pbinfo.ro/probleme/3178/copii2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 

CHAPTER 4:  
Writing in files 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

The basic syntax for writing to a file is: 
 

• fin works exactly the same as "cin," but it reads from the file "filename.in." 
• fout works exactly the same as "cout," but it writes to the file "filename.out." 

 
IMPORTANT: you need to add the library  <fsteam> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 

 
 

CHAPTER 5: 
The ”if” decision structure  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

In C++, the "if" statement is used to decide whether a certain sequence of code should 
be executed or not, based on a given condition. If the condition is true, the code 
sequence is executed; otherwise, it is skipped. 
 
The syntax of the "if" statement is as follows: 

 
In this case, the "condition" is an expression that can be evaluated as true or false. If the 
condition is true, the code sequence within the following curly braces is executed. If the 
condition is false, the code sequence is skipped, and the program moves to the next line 
of code after the "if" sequence. 
 
For example, let's say we want to write a program that reads a number from the 
keyboard and displays the message "The number is positive" if the number is greater 
than zero, otherwise it does nothing. We can use the "if" statement as follows: 
 
  
 
 
 
 
 
 
 
 
 
 
In this example, "cin" is used to read a number from the keyboard, and "if" is used to 
decide whether the number is greater than zero or not. If the number is greater than 
zero, the message "The number is positive" is displayed using "cout." Otherwise, the 
program does nothing and moves to the next line of code after the "if" statement. 
 
In addition to the basic syntax of the "if" statement, there's also a variation called "if-else" 
that can be used to execute a different code sequence if the condition is false. The syntax 
is as follows: 
 
 

 



 

 

For example, let's say we want to write a program that displays the message "The 
number is positive" if the number is greater than zero, the message "The number is 
negative" if the number is less than zero, and a different message if the number is zero. 
We can use the "if-else" statement to achieve this as follows: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
In this example, the "if" statement checks whether the number is greater than zero. If 
this is true, the message "The number is positive" is displayed. If it's not true, the "else if" 
statement checks whether the number is less than zero. If this is true, the message "The 
number is negative" is displayed. Otherwise, the "else" statement is executed, displaying 
the message "The number is zero." 
 
In C++, we can also use logical operators like "&&" (and), "||" (or), or "!" (not) in the 
conditions of the "if" statement to combine multiple expressions. 
 

operator meaning How it’s used 

&& and exp. && exp. (is true if both are true) 

|| or exp. || exp. (is true if any of them are true) 

! no !exp. (is true if exp is false) 

 
For example, we can check if a number is between 0 and 10 using the "&&" operator like 
this: 

 
In this case, the "if" statement will be true only if the number is greater than zero and 
less than 10. 
 
 



 

 

Note: 
Inside an "if" statement (between curly braces), we can include any code sequence: we 
can have multiple lines of code and even other "if" statements. 
 
Exercises: 

1. https://www.pbinfo.ro/probleme/109/paritate 
2. https://www.pbinfo.ro/probleme/105/max2 
3. https://www.pbinfo.ro/probleme/469/interval2 
4. https://www.pbinfo.ro/probleme/106/minim3 
5. https://www.pbinfo.ro/probleme/4339/pare-impare 
6. https://www.pbinfo.ro/probleme/452/cifimp 
7. https://www.pbinfo.ro/probleme/1311/cifegale 
8. https://www.pbinfo.ro/probleme/168/semn 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 

CHAPTER 6:  
Repetitive instructions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

The "while" statement allows for the repeated execution of a code block as long as a 
condition is true. The syntactic structure of this statement is as follows: 

 
For example, the following code will display numbers from 1 to 10: 

 
The "while" statement is useful when you don't know the exact number of iterations 
required to accomplish a certain task. A condition is tested before each iteration, and 
the associated code block will be executed as long as the condition is true. 
 
Note: 
Inside the "while" statement, we can have other repetitive statements, decision 
structures, or the "break" statement. The "break" statement makes the program exit the 
"while" loop and is used for special conditions. 

 
 
 
 
Real example: 
This is the skeleton of a 
code for the TeleOp 
period. 
 
 
 

The "for" statement is another type of repetitive instruction in C++ that can be used to 
iterate through a sequence of statements multiple times. This type of repetitive 
statement is useful when we know exactly how many iterations will be needed to 
accomplish a certain task. 
 
The syntax of the "for" statement is as follows: 



 

 

 
Initialization: This represents an instruction that is executed only once, at the beginning 
of the loop, and is used to initialize the variables required for the loop. 
 
Condition: It is an expression that is evaluated at each iteration and determines whether 
the code block inside the loop should be executed or not. If the condition is true, the 
code block inside the loop is executed. If the condition is false, the loop execution stops. 
 
Increment/Decrement: This is an instruction that is executed at the end of each 
iteration and is used to update the values of the variables required for the next iteration. 
 
  
 
 
 
 
 
 
In this example, the variable "i" starts with the value 1 and increases until the condition 
"i <= 10" becomes false, meaning until "i" becomes greater than 10. Inside, we have the 
instruction "cout << i" which will display the value of "i" at each step. This code will display: 
1 2 3 4 5 6 7 8 9 10 
 
Note:  
Inside the "for" statement, we can also use any other instructions, including "break." 
Increment/Decrement doesn't always have to be 1; if desired, we can make a "for" loop 
go in steps of 5 by changing "i++" to "i = i + 5." 
 
Exercises: 

1. https://www.pbinfo.ro/probleme/327/afisarenumere 
2. https://www.pbinfo.ro/probleme/328/afisarenumere1 
3. https://www.pbinfo.ro/probleme/3984/afisare-m2 
4. https://www.pbinfo.ro/probleme/3976/prodimpare 
5. https://www.pbinfo.ro/probleme/10/suma-cifrelor 
6. https://www.pbinfo.ro/probleme/65/produscifreimpare 
7. https://www.pbinfo.ro/probleme/3979/suma37 
8. https://www.pbinfo.ro/probleme/354/n-maxim 
9. https://www.pbinfo.ro/probleme/54/maxim 
10. https://www.pbinfo.ro/probleme/171/primaciframinima 

 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 

CHAPTER 7:  
Functions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

In C++, functions are blocks of code that perform a specific action when called. They can 
be defined in a separate file and then called from another file, or they can be defined 
within the same file where they are called. Functions are used to organize code into 
logical pieces and to avoid code duplication. 
 
Functions in C++ can be classified into two categories: 
 
 

• Predefined functions: These are functions predefined in the C++ standard library. 
They include mathematical functions like sqrt(), abs(), input and output functions 
like cin and cout, and many others. 

• User-defined functions: These are functions defined by programmers to perform 
a specific action. They are defined outside the main function of the program and 
can be called from within or outside the program. 

 
User-defined functions in C++ can be defined with or without parameters. Parameters 
are variables used inside the function and can be passed from outside the function 
when it is called. Functions can also return a value. This value can be of any type, such 
as an integer, a character, a string, an object, etc. 
 
Example: 
If we have integer variables a and b and we want to determine which one is larger, we 
have two options: 
 
We can use the "if" statement like this: 

 
 

 
 

 
 
 

 
We can use the max() function. This is a predefined function (already implemented in 
C++). It takes 2 parameters and returns the maximum of the two. 

 
 
 

 
These two code variants do the same thing. 
 
In programming, there are two types of variables: 
 

• Global: These are declared outside of functions (outside of int main() ) and can be 
used anywhere in the code (inside functions or in int main() ). 

• Local: These are declared inside functions and do not exist outside of them (you 
can have two variables with the same name in different functions, and they are 
independent of each other). 

 
 



 

 

We can have functions that don't return anything; these functions will have a return type 
of void.  

 
 
 

We can use the max() function as an example to learn how to implement a function. 
 
 

 
 
On the right, you have the general structure of a function, and on the left is the 
implementation of the maxim() function, which functions similarly to max(). 
 
The function takes two int variables as arguments, compares them, and returns the 
larger one. The return type is int because the result will be of type int. 
 

 
Example of a function that returns 1 if the given number 
is prime and 0 otherwise: 
 
Remember: 
Functions can have arguments and can return any type 
of variable. The arguments don't have to be of the same 
type, and there can be as many as needed. The returned 
variable doesn't have to be of the same type as the 
arguments (you can have a function that takes a char, 
two long long variables as arguments, and returns a 
string). 

 
Exercises: 

1. https://www.pbinfo.ro/probleme/896/factorialf 
2. https://www.pbinfo.ro/probleme/897/sumciff 
3. https://www.pbinfo.ro/probleme/898/sumfactcif (you can call a function inside 

another function) 
4. https://www.pbinfo.ro/probleme/24/oglindit2 
5. https://www.pbinfo.ro/probleme/2859/treicifimp 
6. Rezolvati problema https://www.pbinfo.ro/probleme/4272/prodpare Using the 

read and solve functions, the int main() should look like this: 
  
 
 
 
 
 



 

 

 
 
 
 
 
 

CHAPTER 8:  
External libraries 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

An external library is a collection of precompiled code files that can be used to extend 
the functionality of your program. These are often written in other programming 
languages. For example, <iostream> is a library containing files for the functions "cin" 
and "cout". Without it, the computer wouldn't understand what "cout" means. 
 
There are numerous such external libraries that aid in various tasks. For instance, the 
<cmath> library introduces functions like "pow(x, y)" (raises the number x to the power 
of y). 
 
Most libraries you'll use in C++ during high school are included in the "standard library," 
meaning you can import them using the #include command. If you want to use a library 
that isn't part of the "standard library," you'd need to specify to your program where to 
find that library (you won't need to do this in the near future with C++, but the robot's 
code is written using these "external" libraries). 
 
This is how we can import the <string> library into our code. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

 
 
 
 
 

CHAPTER 9:  
Object oriented 
programming 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

In the previous lessons, we learned that there are various types of variables. These types 
of variables are actually classes, and the variable itself is an object. For instance, "int" is a 
class, and a variable of type "int" is an object of that class. 
 
 
We can define a new class if we want, creating a "custom new 
variable type." For example, we can create a class named 
"Person" that has two variables implemented (one for height 
and the other for name). 
 
 
 
 
Here's how you declare a class. "Public:" means that the variables and functions of this 
class can be accessed from anywhere in the code. If we had made these variables 
"private:", then they could only be accessed within the class. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Using this class, we can declare objects of type "Person" and access the variables within 
the class using "object_name.height/name". 
 
We've declared 2 objects, "a" and "b", each with its own "height" and "name" variables. 
 
This code will display in the console: 

 
 

 
 
 
 
 

 
 
 
 
 
 



 

 

 
We can also add functions to a class. 
 

 
 
This function takes an integer variable as a 
parameter and increases the "height" value of 
the object it is called on by the value of "val". 
 
In this example, we will use the "addheight" 
function on the object "b." As a result, only 
"b.height" will be changed, while "a.height" will 
remain the same. 
 
 
 
 

 

 
 
In the console: 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 

 

A constructor is a function that is automatically called when an object is created. It can 
also have parameters. For example, we can provide parameters like name and height, 
so when we create an object, it will already have the name and height set without us 
needing to write them using "a.height = ...". 
 
A constructor is a function with the same name as the class it belongs to and without a 
return data type 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This program will display the exact same thing as the previous one, just in a cleaner way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 



 

 

 
 
 
 


